Devil Whiskey — Map Tutoria

Section 1 — Introduction, basics of map files

The mapsin Devil Whiskey areall laid out asagrid of cells. The movement is
based on abasic X/Y grid, with each grid cell having a possibility of awall on any of its
four sides. A cell can aso include a“garnish”, such asthe crossin the Courtyard, a door,
which isreally just awall texture you can walk through, or an empty space (no walls
defined).

All thefilesare written in plain ASCI|I text, to be easily modifiable with a text
editor — the developers primarily used Vim and XEmacs for the purpose of file editing.
There are countless text editors available for most every platform, pick your favorite, or
try afew if you don’t have afavorite yet. Any line can be commented out by starting the
line with a# symbol, this allows you to leave notes for yourself and other without
messing up the game’ sinterpretation of thefile.

There are 3 basic filesfor creating a play map, each of whichisrequired. They
build upon each other, starting with awall map file, which isused to build acell file,
whichinturnisused to create the main map file. All map files are stored in <install-
dir>\maps for an example, feel freeto look at any cohesive group, such as
cave walls.cfg, cave cells.cfg, and cave.cfg. You will notice there are a couple more
cavexxxx.cfg files, more on those | ater.

Section 2 — Individual Map Filesin detail

Wals
The wallsfile defines the basic wall textures you will use to create your maps,
each different texture needs aline, and the format is as follows (< and > for clarity only):
<WallName> <texture pic file> <collision-integer> <special type> <height>

= wallnameis simply the name you want to use to refer to thiswall texture

= Texturepicfileistherelative path and name of the texturefile, created using
TexMake (see another tutorial for how to use texmake).

= Collision Integer is set to either O or 1, following the C tradition of O representing false
and non-zero representing true. If thisvalueisset to 1, it means the player cannot
pass through this texture.

= Special type: 0 = standard, 1= secret door, -1 floor tile (if none given, defaultsto 0).

= Height —values: 1 -4 if nonegiven, defaultsto 1.

So, abrief example - in cave_walls.cfg note thisline:
wadll picswallg/cavel.dat 1

This definesawall texture, named Wall1, using the texture image pics/walls/cavel.dat (ie
— it comes from <install-dir>/pics/walls/cavel.dat) and defines collision to be true, so you
cannot walk through it. Valuesfor Specia type and height are not given, so they are their

default values of standard and 1 respectively. In other words, thisisanormal wall,
nothing special about it.

We will similarly define adoor:
Doorl pics/walls/cave door.dat O

This creates awall texture named Doorl using theimage in pics/walls/cave_door.dat
with no collision, standard type, standard height. So the player can walk through thiswall
texture, making it act as a doorway we can walk through.

Y ou can use the same file for multiple definitions (makes it easy to add new textures
without redoing your map file) and you can define awall texture that isreally only the
floor (such as the beaten path from the adventurer’ s hall to the front gates of Rennibister.

A note about height — if the map does not define a ceiling (i.e., it's an outdoor map, see
below), the height is as you may guess— how high off the ground the wall goes. If,
however, the map does define a celling, the wall height will be interpreted as distance
from the ceiling, not from the floor. Thismeansif you have a portion of the map that is
at height 4 (i.e., the celling is 4 units high), and you want to have a partial wall (that
doesn’t go all the way to the ground) that connectsto a height 2 section of the map, you
need a height 2 wall, if you want a partial wall that connects to a height 1 section, you
need aheight 3 wall, and so forth.

Cdls
Using the walls you define in your walls.cfg file, you can then create a cell file,

which defines each type of individua cell you will need in your main cfgfile.
Remember that each cell can have awall at any of the cardina directions, and/or asingle
garnish in the center of the cell. Throughout Devil Whiskey, our standard practice of
representing the Cardinal directions (North, South, East, West) has been to start at North,
and work our way counter-clockwise through the rest of the directions. So North comes
first, then West, then South, then East. Here isan example of aline from the
cave cdlls.cfgfile:
<Cell name> <N Wall> <W Wall> <S Wall> <E Wall> <type> <floor> <garnish>

= Cell Name— The name you will refer to the cell by in your main map cfg file

= N Wall —thewall tag defined in the maps’ wall.cfg file that you will use on the north
side of thistype of cell

W Wall — same as above, but on west side

SWall — same as above, but on south side

E Wall — same as above, but on east side.

type: 0, 1, or 2. 0 meansnormal cell, 1 meanswe' re going to define acell with a
specia floor texture, and 2 means the cell will contain agarnish

= floor —if type=1or 2, give afloor texture, either texture name to use, or NULL if

default
= garnish—if type=1or 2, giveagarnishimageto use, or NULL if no garnish.

NOTE: Thereisone special cell that MUST be defined in every cell file, named
‘DEFAULT’. Thisisthe cell definition that every cell in the map will have, unless
overridden by a setting in the main config file (below).

Main Config file
Finally, the map needs this last file, to put it al together, and define afew global

items needed. Thisisthe most complex of the map files. The format follows:
<map name> <map width> <map height> <default floor> <default ceiling> <title bar image>

<wallsfile> <cellsfile> <eventsfile> <monster file>

SPECLITEfrfgfbfdIriglb

audio/config 1

<audio file name> <audio track to use>

SPECCELL stairx stairy numOfTraps

trapX trapY trapType trapNum <repeat, one per line = numOf Traps>

RANDITEMS <numOfRandItems>

itemNameWithUnderscores relativeFreq <repeat, one per line = numOfRandltems>
mapX mapY cellName

Letsreview each of these itemsin more detail:
First Line:

= Map name — the name to represent this map (unique from other maps)

= map width —the width in cells of the map

= map height — the height in cells of the map

= default floor — path to a default floor texture — will be used in al cellsunlessa

floor texture is specified for acell in the walls.cfg file
= default ceiling — the default ceiling texture for al cells
= title bar image—thisis an image that containstext or whatever you'd like to go
above the Upper Left window (navigation window)

Second Line:

= Walsfile— the name of the walls.cfg file for this map (ie — maps/mywalls.cfg)

= Célsfile—the name of the cells.cfg file for this map (ie — maps/mycells.cfg)

= eventsfile— the name of the events.cfg file for this map — see below

= monster file—the name of the monster.cfg file for this map — see below
SPECLITE line:

The keyword SPECLITE followed by the lighting values, 7 real numbers ranging
from 0.0 to 1.0 (inclusive) - with values for the following fog/colors:

= fr- fog color —red

= fg—fog color —green

= fb—fog color —blue

= fd-—fog density (0.0isno fog)

Ir - ambient light — red
Ig—ambient light — green
* |b—ambient light — blue
audio/config 1: Thisline states that the audio config files for this map are contained in
the audio/config directory, and that there is only one audio config. It canbe‘0’ if

no ambient audio is used, or more than 1 if you use multiple time-based audio
config files (see ‘rennibister.cfg’ for an example).

audio file name/ start time— the name of the audio config file, and the time to start this
config. If thereisonly one audio config, then the value will be‘0’ (for ‘start at
midnight’). If thereis more than one, then thisisthe hour (24-hour day) that the
particular config will become ‘active’. There will be exactly the same number of
config-file lines as specified in the config count (on the line above).

SPECCELL line:
= The Keyword SPECCELL
» stairX —the x location (cell wise) of the ENTRY stairs
= garY —they location (cell wise) of the ENTRY stairs
= numOfTraps— the total number of traps in this map
= gpecial note—the stairX and stairY line are needed for the RELO spell
Trap Lines.
= trapX —the x location of the trap
= trapY —they location of the trap
= trapType—thetype of trap, 1 for normal (script based), 2 for spinners, 4 for
anti-magic, and 8 for darkness traps
trapNum — needed if trap is of type 1, calls the corresponding numbered trap
script (trap000x) so setting thisto 2 would call script: trap0002.py
RANDITEMSline:
= Thekeyword RANDITEMS
= numOfRanditems:. an integer value, that specifies the total number of unique
items you are about to list

[tem lines.
= Thenameof theitem, asgiven in bl2d items.txt, with spaces replaced by
underscores‘_’ so aDwarven War Axeislisted as Dwarven War_Axe.
Spelling and capitalization matter
= relativeFreqg - The relative frequency of the item drop. A larger number
relative to the numbers given for other items listed means this item drops
more often.
The actual map definition:
= mapX — the x coordinate of the cell
= mapY —they coordinate of the cell
= cellName — the name of the cell to place at this x/y location

Tipson map design:

= Start your map on graph paper, which makesit easy to construct the text file and
determine the necessary cells.

= Review some of the included mapsto help get you started, there are lots of easy to
read examples in the maps directory of your Devil Whiskey installation, check
them out for examples— they’re all plain text

= Giveyourself some buffer room around the edges of the map (ie — blank cells), it helps
to make defining outer walls easier, and gives you room to add blanks to the
bottom of the cell

= Blank cells need no definition, nor do they need linesin the map.cfg. If no lines are
given, the cell will contain no walls, and have the default ceil and floor textures.

= Make sure your maps all have enclosures going around them, ie— no holesto let the
player wander off the map.

= Don't overlap the same edge between two cells. If you have two cells, next to each
other with the samey value (ie — one on left, one on right) — don’t give both cellsa
wall on the common side. The more walls you have the slower the map runs/l oads,
and putting two walls together on the same edge causes graphical artifacts while
playing.

= Usethe DWMapEditor for verification—it’s still in development for making new
maps, but is an excellent tool to quickly review the maps you’ ve made. While it
does produce fairly reliable maps, it is somewhat untested, and there are afew
known issues, such asit failsto write out a SPECCELL line, has no utility for
adding traps or random items, and the SPECLITE cell it writes out is not standard
(athough functionally correct). The map editor was NOT used in the production
of the maps for Devil Whiskey full 1.0, but was used for verification purposes.

Section 3 — the other map files

Mon
You'll notice that each map has a corresponding nameMon.cfg file for it, thisis
the monster file referenced in the main map config file — it contains information about
which monsters will be in this map, their frequency of appearance, number of monsters
available to the map, and the timeframe in which they will appear. Theformat isas

follows:
<num of monsters> <frequency of random encounters>
<name> <grp base> <grp var> <initial range> <base occurrence> <extra occurrence> <entry hr> <leave hr>

Firg Line:
= numOfMonsters — the number of different monster definitionsin thisfile
= freguency of random encounters— integer between 0 and 100, the larger the
number, the more often the party gets randomly attacked
Definition Lines:
= name - the name of the monster from monsters.txt, with spaces replaced by
underscores
= grp base — the base monster group size, ie — 2 here will mean the monster
group always has at least 2 of thistype of monster
= grp var —the variance of the monster group size — this defines the range of
random numbers that can be added to the group, ie — defining 2 in grp base
and 3 here means the monster group size could range from 2 to 5 monsters.
= |nitia range — the starting distance the monster begins combat at — ie 30 means
the monster enters combat 30" away from the party
= base occurrence — the base chance of occurrence, it never changes,
representing the fact that your party will never kill all of any monster type.
= extraoccurrence —thisis added to the base occurrence upon entering the map.
When a monster group iskilled, this number degrades, meaning that the
monsters of that type will become less plentiful on this map.

= entry hr —thefirst hour at which these monsters become active on the map in
24 hour timeie— 0 is midnight

= |eave hr —thelast active hour these monsters are active on the map in 24 hour
time—ie—23is11:00 pm.

to be noted in regards to time —if the definition is O for entry hr and 23 for leave hr, the
monster isavailable on thismap at all times. Thisisuseful in the cities and the wilds for
making the more powerful enemies come out at night.

Event
The last map related file is arguably the most important after the map definition

itself, the event file specifies what happens and where on this map. Entry/exit staircases
and passageway's, scripting plot encounters, chests, and anything el se that might happen
to the party happens through event scripts. Writing the event scriptsis another tutorial on
its' own, but the mapEvent.cfg file determines when a script isrun. It hasasimplistic
format as such:
<triggerX> <triggerY> <event Processor>
<reboundX> <reboundY> <reboundFaceAngle> <scriptName>

These 2 lines must exist for each event that you wish to include in the map. The format
specifies the following:
Linel:
= triggerX —the x location that triggers this event
= triggerY —they location that triggers this event
= eventProcessor — thisis the number of the event to trigger, and will most
commonly be 2000 — which is the python interpreter that handles scripted
combats, stairs or other map changes, messages to player, plot
advancement, etc. Other event numbers are listed in the next section
Line 2:
= reboundX —the x location the character is rebounded to once the script
terminates with afalse (0) result
= reboundY —they location the character is rebounded to once the script exits
with afalse (0) result
= reboundFaceAngle — the angle the character isfacing on rebound — 0 = north,
90 = west, 180 = south, 270 = east
= scriptName — the name of the python file to invoke without the .py extension,
ie—if we wanted to call myPlotScript.py from this location, we would use
myPlotScript for the script name.

Appendix: Event Numbers
1000 — Adventurer’s hall
1001 — Elium’ s Energies
1002 — Temple of the Redeemer
1003 — Collegium of Magika
1005 — Order of the Lyre
1006 — Melkoran’s Tavern
1007 — The Green Bard
1008 — Hughter’ s Owl
1009 — The Chiccasaw
1010 — The Marauder’ sHole
1011 — Starfire Swords
1012 — Imperia Weapons
1013 - Armsof Vaor
1014 — General Store
1017 — Landru’ s Craft Supply
1018 — Guard’ s Barracks

** NOTE: most barracks are actually scripted **
1022 — Casino
1023 — Arcanium
1050 — Generic Stranger’ s House
2000 — Python Interpreter for python scripts

